

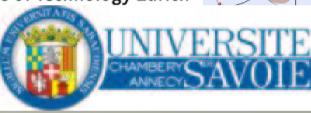
Anodic alumina as a perspective multipurpose material

Presented by G.Drobychev

Collaboration

Институт ядерных проблем
Белорусского государственного университета
нии яп ыгу

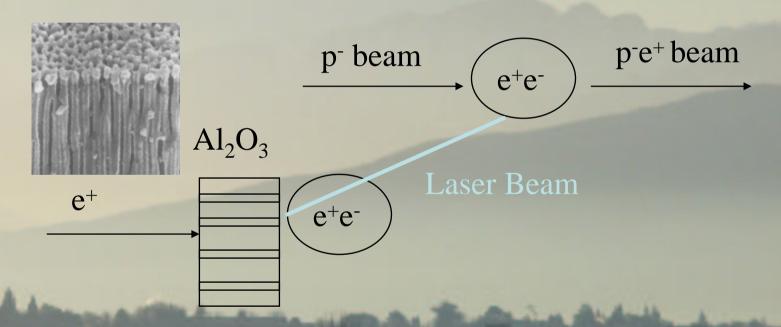
Research Institute for Nuclear Problems Belarusian State University INP


École d'ingénieurs Swiss Federal Institute of Technology Zurich

J De Baerdemaeker, C Bas, A. Borisevich, N Charvin, P. Crivelli, K Delendik, N Djourelov, G Drobychev, S Gninenko, M Lomello, Y Mugnier, P Nedelec, C A Palacio, D Sillou, O Voitik, ...

Anodic alumina as a potential material for MCP production

- Effective secondary electron emitter.
- Possible to produce structure of necessary geometry.
- Surface of plate is up to 50*50 mm.
- Thickness is from several up to 250 μm.
- Channels diameter from 10 to 250 nm (natural porosity).
- The technology exist to produce samples with any required channels diameter starting from about 5 µm.
- Recent results allow to be optimistic concerning AAO electric resistance reduction.

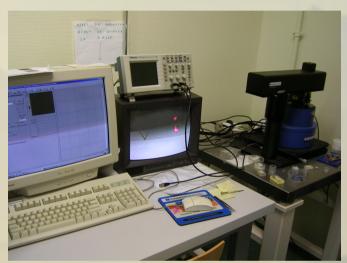

Anodic alumina as a potential material for MCP production – plans

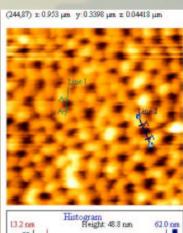
- To complete systematic studies of the AAO resistance reduction methods in order to optimize technology.
- To test amplification of the AAO MCP with increased conductivity and channels enlarged by etching.
- In case of positive results:
- To restore contacts with industrial partners, who can produce a prototype of the ultra-compact PM on a basis of the new MCP.

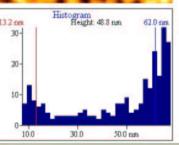
• ...

Anodic alumina as a potential material for positronium production

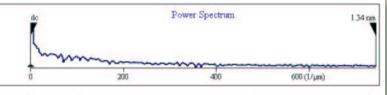
An antihydrogen beam experiment setup (AEGIS):

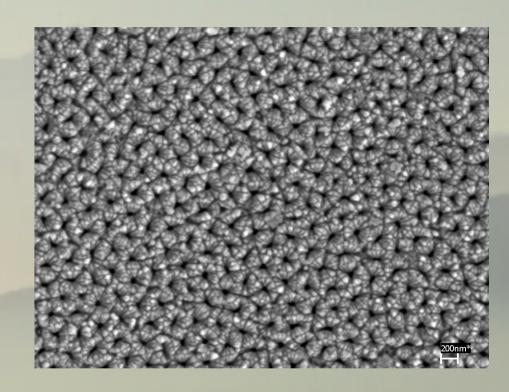


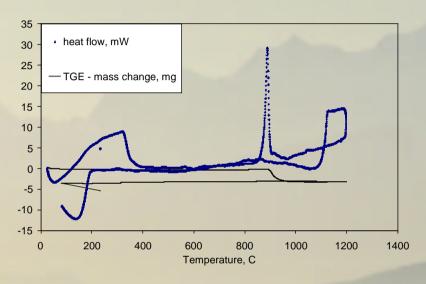

Anodic alumina as a potential material for positronium production

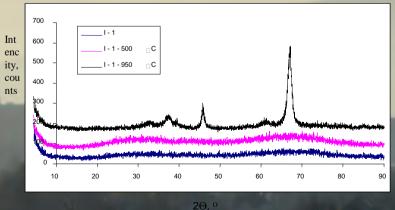

- Thickness can be from several to 300 µm
- Diameter of channels are precisely controlled in the region from 10 to 250 nm (natural porosity) and from 5 µm with use of etching technology.
- Regular porous structure with possibility to remove barrier layer (open channels)
- Total surface is up to 5*5 cm and 7*7 cm with special production technology
- Surface of channels to total surface ratio up to 50%

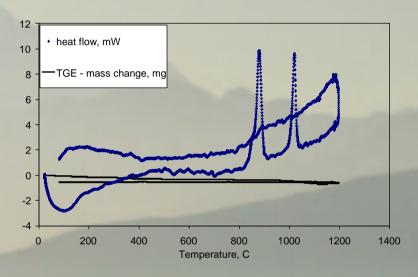
Anodic alumina for positronium production – what research was already done:

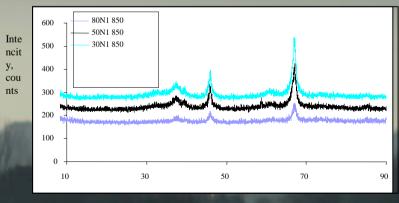

Preliminary surface studies with atomic force microscope (ESIA)



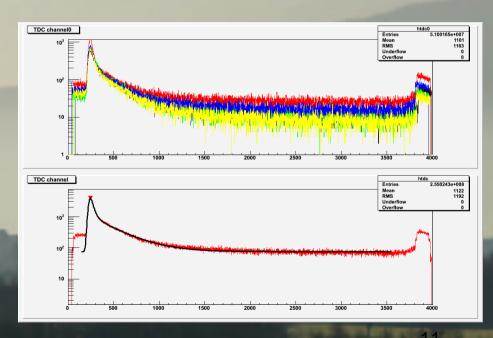

	Arc length	Bearing Ratio	Bearing Ratio	Peak (Rp)	Valley (Rv)	Cursor	
Line 1	4.060 µm	@30.0% 53.04 nm	@80.0% 27.86 nm	18.54 nm	-26.69 nm	A d: 72.11 nm	-
Line 2	4.117 µm	@30.0% 62.01 nm	@80.0% 22.89 nm	21.31 nm	-39.73 nm	A d: 84.66 nm	1
							1
Delta [.]	300						
	4						


Electronic microscopy (Minsk)



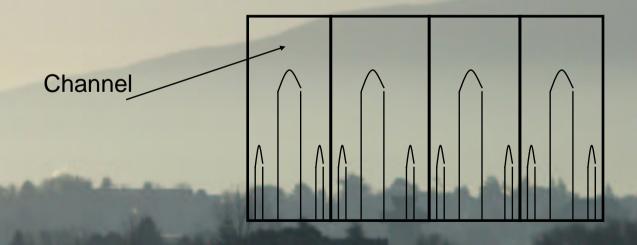

lµm

Structural studies (LMOPS, ESIA)


 2Θ , \circ

Positron, Positronium, Nanoporous materials applications.

LAPP, Annecy-le-Vieux, France, 20-21 November 2007


Positronium production experimental studies

- Tests at radioactive source at LMOPS:
 - The results are positive, the details are presented by N. Djourelov.
- Test at slow positrons beam at CERN:
 - Two different samples were tested up to date, the data are still under analysis.

Anodic alumina for positronium production – future:

- To test AAO samples at high and low temperature with radioactive source at LMOPS.
- To test more samples at the beam facility (time of flight).
- To test dendroid structure:

Anodic alumina as a potential material for filtering

Sizes of some dangerous objects:

- Staphylococcus 1000 nm
- Grippe virus 50 100 nm
- Smoke micro-particles 10 50 nm

Anodic alumina as a potential material for catalyzing

- Free surface of natural structure is more than 10³ m²/g (standard catalytic powders are about 300 m²/g)
- After annealing a secondary porosity can be created, which increase surface significantly (10⁴ – 10⁵ m²/g)
- Technology to insert nano-disperced media into secondary porosity is developed

Conclusion

- Nevertheless or rather slow progress of the recent years, material is very promising in several fields of application, including nuclear physics, chemistry and nano-technology.
- Industrial partner with interest in investments is welcomed to contact with collaborators ©