Noise limitations in SCA.

eric.delagnes@cea.fr

Ps Timing Workshop Chicago – April 28th 2011

Relation between noise & jitter.

 $\sigma_t = \sigma_V \cdot dV/dt$ "Low" frequency noise can be rejected digitally (baseline subtraction, digital filter, digital CFD...) dV/dt is proportional to A/BW

Stage »

$$S(t) \xrightarrow{\sigma_{D}} \underbrace{SCAin}_{BW_{SCAin}} \underbrace{\sigma_{SCAout}}_{W_{SCAin}} \underbrace{\sigma_{ADCt}}_{W_{SCAin}} \underbrace{\sigma_{V}^{2}}_{W_{SCAout}} = G(\sigma_{D}^{2} + 2\sigma_{G}^{2}) + \sigma_{SCAin}^{2} + \sigma_{ADC}^{2} + \sigma_{ADC}^{2}$$

$$A(t) = G. S(t)$$

- σ_D and σ_G are the contribution of detector + amplifiers: scales as $BW^{1/2}$.
- σ_{SCA} contribution of the SCA
 - σ_{SCAin} part scales as $BW_{SCAin}^{1/2}$.
 - σ_{SCAout} after the sampling) is independent of BW_{SCAin}
- σ_{ADC} digitization noise (including quantization noise (LSB/ 12^{1/2}).

Switches in scaled down technologies.

• MOS switch Ron resistance given by :

$$R_{ON} \approx \frac{1}{g_{ds}} = \frac{1}{\mu * C_{ox} \frac{W}{L} (V_{gs} - V_{th})}$$

Highly non linear

• Usually it is linearized by using NMOS & PMOS in parallel and swing set to ~VDD/2

• In advanced technologies:

VDD is reduced, VTH also but not in the same ratio => max signal decrease.

CMOS switches linear region is smaller & smaller

Max signal decreasing with technology scaling.

• In advanced technologies:

٠

• CMOS switch less useful => use of NMOS only switch. Swing now centered near gnd.

=> can be a good thing as PMOS switches (3×1 arger than NMOS switches) are heavily loading the input SCA input (lumped RC on the input bus)

• But R_{on} now vary a lot with Vin: => BW vary with Vin

 \Rightarrow Distorsion => poor ENOB

- Solutions (can be cumulative):
 - Limit the input swing to stay in the linear region.
 - On-chip clock mulitplication
 - Bootstraped switch (VGS-VT= cte) used in modern ADCs. Need for extra capa on the input bus. Feasible in a SCA ?

Differential input : swing multiplied by 2. Effect of non constant Ron averaged.

In any case A reduced => need some effort on σ_V to get a good time resolution.

Noise source in SCAs

• Very architecture dependent . 3 family of designs studied:

- But Common features/rules are existing.
 - 4 kinds of "noise" can be distinguished:
 - The noise due to artefacts.
 - The pickup noise / D->A coupling / Power supply noise
 - "Dynamic" noise : distorsion, non linearities...
 - The intrinsic electronic noise : the most easy to understand and to manage

Noise due to artefacts.

- Unwanted behavior of the digital part : metastablity ...
- Ghost pulses : the old events are not fully erased before a new is written in the SCA => memory of a previous pulse.

 \Rightarrow Dielectric absorption problems reported in the SCA of early 90s.

- XTALK in some special cases (mixing of signal with very different amplitudes, saturation).
- Coupling between input and output
 - \Rightarrow All the high impedance nodes of the SCA are perfect receivers (capacitive coupling) for the high frequency input signals.
 - \Rightarrow The output impedance of a closed loop OTA is high at high frequency.
- In the following slides we assume that some "fix pattern" spread (offset, gain) can be corrected offline
 - \Rightarrow valid only if stable (with time, temperature...):

 \Rightarrow Mor stable if closed loop or differential structures

 \Rightarrow If not, they are randomized and are contributing to noise.

Noise due to couplings : may affect operation during sampling or readout

- On and off chip D->A coupling:
 - Very dependent on layout, technology and substrates.
 - In SCAs, we are obviously in very favorable situation :
 - No gain in intrinsic part of the SCAs (excepted the hidden ones).
 - Any idea of what happens when x10 or 20 gain integrated in the chip ?
 - Minimize high impedance nodes.
 - Larger Cs => Larger robustness
 - The couplings which are synchronous with the sampling clock (or dividers) are often reproducible and may be seen as "pedestals".
 - Avoid asynchronous clocks or asynchronous signal dispatched everywhere.
 - Differential signaling helps a lot (If CMR still exists @ HF)

Noise from power supplies

- External noise (ie from DC-DC converters).
- Noise can be generated by outside digital logic or by the activity of the chip itself
- Sensitivity to the power supplies (PSRR):
 - Closed loop structure are more robust (esp. if using OPA) , but very scales as open loop gain.
 - Differential operation helps a lot.
 - Worst when VDD is smaller.

Dynamic « noise »

- Dynamic distorsion of the signal may be seen as noise.
 - Systematic non linearities:
 - Switches(Q injection), amplifiers: can eventually be calibrated and corrected.
 - Bandwidth dependency:
 - along the SCA (bus resistances): problem for long SCAs.
 - With the amplitude:
 - Switch non linearities (Ron)
 - Slew rate.
 - Dependency of the sampling time with the signal level.

IN ADC datasheets: all this is included in the ENOB (together with jitter)

Intrisic Noise in SCAs

- Very architecture dependent
- 3 very different designs developed in the comunity
- But Common features/rules are existing.

kTC or sampling noise when switching with MOS

When integrating the noise over the noise BW:

 $=> \langle V_s \rangle^2 = 4$. γ . k.T. $R_{on}B_N$ if 1/f is neglected

With Noise Bandwidth $B_N = \pi/2$ BW = $1/(4.R_{ON}C_s)$

 $\Rightarrow \langle V_s \rangle^2 = \gamma$. k.T/C sampled on C_s

It is often reduced to kT/C

1/f noise contribution very complicated, mainly independent on C_s and often neglected . Is it sill true for deep submicron ?

Scales as (area)-1

Extends to few MHz in modern CMOS

Effect of Technology scaling

No dramatic degradation of γ with scale down

- High dependance with process details
- larger Kf when scaling down
- Degradation in time reported.

Intrinsic SCA Electronics noise: Quadratic sum of 4 terms

- Input Buffer noise (if exists):
 - $\sigma_{BUF} = e_n \cdot (\pi/2 \text{ OBW})^{1/2}$
 - e_n is the noise voltage density of the input pair, scales as $g_m{}^{1/2}$ ie Id- $^{1/4}$
 - σ_{BUF} =150µV rms/ 450MHz BW in SAMLONG (en= 4nV/ \sqrt{Hz})
- Sampling noise $\sigma_{kTC} = (kT/C_S)^{1/2}$ = noise floor of the SCA.

	Target	DRS4	SAM(LONG)
Cs (fF)	14	250	300
σ _{kTC (µV rms)}	540	130	120

=> obvious tradeoff between noise and BW

- **Output Mux or output buffer** (if exists):
 - Mainly OPAMP used as voltage follower.
 - Scales as $1/\sqrt{\text{gm}} = \text{Id}^{-1/4}$ and as $(OBW)^{1/2}$ (output BW, can be decreased if lower speed readout).
 - 80µV rms in SAMLONG (20MHz mulitplexing).
- Readout noise. See next slide.

ALL THESE CONTRIBUTIONS ARE MULITPLIED BY 2 fo diff. operation.

SCA ReadOut Noise: Wilkinson Readout

• Ramp noise

 $\sigma_{Ramp}^{2} = (i_{n}^{2}/2 . t + K^{2} K_{f} . t^{2})/C_{r}^{2})$

 i_n^2 is the thermal noise density of the current source (scales as gm or $I_{ramp}^{1/2}$) K_F is the flicker noise coefficient, K is a constant.

 \Rightarrow Fast conversion is favorable.

 \Rightarrow Sigma scales as $1/C_r^{3/4}$ (thermal) or $1/C_r$ (1/f)

• Comparator noise.

Highly depend on the structure.

For a given speed σ_{comp}^2 scales as 1/gm of the input pair.

SCA ReadOut Noise: Follower readout

 Unity gain OTA or OPA If well designed (negligible 2nd stage noise).

 $\sigma_{Fol}^{=}$ e_n . ($\pi/2$ OBW)^{1/2}

with e_n scaling as $1/\sqrt{g_m}$ (ie1/ID ^{1/4}) and $1/(W/L)^{1/2}$ of the input MOS pair one OTA/cell => transistor size limited

- If not set externally OBW is proportional to gm / Cc $\Rightarrow \sigma_{Fol}$ becomes independent on g_m
- If set externally: this contribution can be decreased if the RO frequency is decreased.
- For the same power consumption the noise of a MOS used as a source follower is better by 2 or more (for the same area used).

SCA ReadOut Noise: Flip around Readout

Unfortunately this configuration amplify the OPAMP noise:

 $\sigma_{FA1} = e_n \cdot (C_P + C_S / C_S) \cdot (\pi/2 \text{ OBW})^{1/2}$

With e_n = input refered noise density of the amplifier scales as 1/gm. can be minimized by increasing input transistor size (only one ampli/ channel)

=> C_p must be minimized by design/layout and C_s maximized. => for long SCA the noise becomes proportional to the SCA length.

=> can be decreased if OBW is limited => slower readout.

Before reading Cs, Cp must be reset:

=> extra contribution $\sigma_{FA2} = (kT/C_s)^{1/2}$ with the most efficient reset scheme

On SAMLONG RO noise contribution is $\sigma_{FAI} = 270 \mu V \text{ rms}$ (20MHz ReadOut)

Exemple: of the « Intrinsic Noise » contributions for SAMLONG

Total : 350µV (single ended) => 500µV rms differential

Clearly dominated by ReadOut contribution: Price to pay for a "robust" readout.

Another possible noise contribution

• Switches Leakage currents are discharging Cs:

=> voltage drop depending on time between W and R.

• Not an issue with old technologies:

AFTER Chip (T2K TPC) AMS 0.35µm Distribution of the voltage on 120 chips * 65000 cells drop after 2 ms. 1 LSB = 0.5mV => 55fA

• Can become a problem in deep submicron:

Low VT + Low weak inversion slope

Use of True Differential signaling ?

- Pros:
 - Max signal doubled.
 - SCA noise increased by $\sqrt{2}$
 - Less distorsion (even harmonics cancelled)
 - D/A coupling rejected
 - Good PSRR
 - Leakage effect compensation.
 - Massively adopted in industry
- Cons:
 - Power consumption increase.
 - SCA surface doubled.
 - With a similar increase, you could increase Cs and theoretically improve the S/N by more than $\sqrt{2}$
 - Detector signal are often single ended => need for an interface element

S/N increased by $\sqrt{2}$

Use of OPAMP or single-ended structure ?

- In the first fast SCA we designed (ARS):
 - The amplifiers were single ended.
 - The structure was not differential.
- REAL S/N was limited to ~8-9 bits because of temperature stability of gain and baseline spread (no correction performed at all)
 - => All this has been improved by the use of closed loop OPAMP.
- But for the same power consumption, the noise of an OPAMP is more than $\sqrt{2}$ larger than for a single ended one.

• Modern technologies are offering NMOS with seperate wells

=> Good candidates for linear followers, power, area and speed efficient.
 => Used in the MDACs of several recently published 10-bit pipeline ADC designs.

=> Differential structure cancels spread and sensitivity to supplies and temperature .

THANK YOU FOR YOUR ATTENTION