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Photocathode Issues

B Conductivity
B Balancing Absorption and Electron Collection
— Photon Absorption Lengths are long
* Nanostructuring
* Plasmonics
— Electron Diffusion Lengths are short
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Atomic Layer Deposition (ALD)

B | ayer-by-layer thin film synthesis method

B Atomic level control over thickness and composition
(even on very large areas)

M Precise coatings on 3-D objects
B Some unique possibilities for morphology control
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ALD Reaction Scheme
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ALD Thin Film Materials
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ZnO in Silicon High Aspect Ratio Trench
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Mixed Oxide Deposition: Layer by Layer

—[(CH,CH,),Zn

CH.),Al/lH, /I H,0]

* Mixed Layers w/ atomic precision
« Low Temperature Growth
‘Transparent

‘Uniform

*Even particles in pores can be
coated.

Mass Deposited @/cmz)

* FHIms Have Tunable Resdivity, Refractive | ndex,
Surface Roughness, etc.

Photocathode Workshop

July 20-21, 2009
University of Chicago



ALD: Abrupt Semiconductor Dielectric Boundaries

B Semiconductor Industry - a clue

- Silicon is reactive but oxide is
simple and passivates well (but has
a low dielectric constant)

- Gate dielectric oxides are now
being used on Si

metal (and being produced by
ALD

20 m2 / batch)
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Components of ALD System

Precursors
Valves

Carrier Gas Heated Substrates
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B Equipment is simple
B Scale up is straightforward
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ALD Viscous Flow Reactors at ANL

* 10 chemical precursor channels
- gas, liquid, or solid
- precursor temperature to 300°C
- 0zone generator
* Reaction temperature to 500°C (1000°C)
* In-situ measurements
- thickness (quartz microbalance)
- gas analysis (mass spectrometer)
* Coat flat substrates (Si), porous membranes, powders, etc.




Anodic Aluminum Oxide Membrane Properties

High Surface area substrates for increased
absorption

Typical membrane properties
B Membrane thickness = 75 pm
B Conductance ~ 0.2 sccm/torr (N, @ 1 atm)
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Combining AAO and ALD

B Conformal deposition of a wide variety of metals and
metal oxides

B Extraordinary control over layer thickness

pore
TiO,
ALO, pore wall

TiO,
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AAO/ALD Electrode Design Incorporating Transparent
Conducting Oxide (TCO)

Key feature:
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Enhanced Performance From Radial Charge Collection

—e— TiO, over ITO
—0— TiO, only
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B Higher photocurrents (x20) with interdigitated TCO
B Radial charge collection:

— Accelerates electron transport

— Reduces electron-hole recombination




Plasmonic Photocathode Demonstration

Electrode

Fig. 18. A schematic representation of field
enhanced metal nanoparticle solar cell
geometry is shown. In this design, serve only as
plasmonic amplifiers. In future designs,
interconnected particle arrays will also serve as
current collectors, enabling the TCO to be
omitted.
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Figure 1. Plasmonic energy transfer scheme. Ag
plasmonicabsorbers are excited by the absorption of
a photon. Excitation is short lived in a plasmon
normally with internal conversion losing the
excitation to heatin a few 10’s of fs.** In a solar cell,
a second route to de-excitation of the plasmon is
energy transfer to a nearbydye (k,). Rapidly this
excitation results in electron transfer to the wide
band gap semiconductor, k,, (~3fs)* orintersystem
crossing to a triplet dye state and then e transfer.




Plasmonic Absorption Enhancement
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Fg.17. Plasmonic enhancement of
photocurrent generation for a nominally
flat photoelectrode featuring  ALD
coated (TiO,) silver nanoparticles as
anplifiers. Currents are lowest with thick
ALD coatings (little plasmon amplification)
and highest with thin ALD coatings
(substantial plasmon amplification).

Dye &
Silver.

Fig. 16. a) N719 dye on low-area (flat) TiO, electrode, b)
silver nanoparticle-coated, low-area (flat) TiO, electrode,
c) N719 dye on TiO, (ALD)-coated silver nanoparticle

layer on electrode. Quantitative measurements indicated
ca. 5 to 7 fold enhancement in dye absorption in the
presence of silver particles.

Silver
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Combination
Contact and
Enahncer

— E

Fig. 20. Interconnected metal
particle arrays for combined
light enhancement and electron
collection. Schematic A) top
view; b) side view, ¢) SEM
image of a test Ag structure.
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Internal Stripes

Internal Stripe Deposition Concept

B Objective : deposit specified surface species at
arbitrary depths in the membrane. Several

Scheme C:
B This scheme is implemented in three steps:

schemes are possible to achieve this: d
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Internal ZnO Stripes Positioning

Depth Positioning
B The TMA mask stripe depth was varied

keeping all other growth parameters 35.00
constant
30.00
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Benefits of Argonne Nanostructured PV Technology

B | ower manufacturing cost than other PV technologies
B Non-vacuum, low temperature fabrication

B Very tolerant to impurities (no clean room necessary) — light absorption
and charge separation occur close to interface

B Inexpensive, abundant, benign materials (e.g. TiO,, ZnO)
B Robust nanoscale process
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